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Abstract—In this paper the problem of the HIV/AIDS spread
reduction is addressed in the framework of optimal control
theory. A model recently proposed has been adopted; it considers
two classes of susceptible subjects, the wise people and the
people with incautious behaviours, and three classes of infected,
the ones still not aware of their status, the pre-AIDS patients
and the AIDS ones. The control actions involve prevention by
information campaign, to reduce the category of subjects with
unwise behaviour, by test campaign, to reduce the number of
subjects not aware of having the virus, and medication on patients
with a positive diagnosis. A cost index aiming at the reduction of
patients with positive diagnosis is introduced with the conflicting
requirements of using as less resources as possible.

Index Terms—epidemic modeling, optimal control, HIV-AIDS
spread

I. INTRODUCTION

In this paper, an optimal control approach to determine
the interventions to face the HIV/AIDS spread is proposed.
HIV stands for Human Immunodeficiency Virus and it is
responsible of the Acquired Immune Deficiency Syndrome
(AIDS) that can be reached in 10-15 years from the infection
[1]–[3]. The virus infects cells of the immune system that
becomes weaker, so that the possibility of infections increases;
the HIV is mainly transmitted through body fluids exchange
between individuals.

Despite the well-known modalities of its diffusion, it is still
one of the most diffuse disease; the most alarming aspect is
that there is still a serious delay for the infected subjects to
become aware of their status. All the subjects of the popula-
tions are susceptible but with wise behaviour the spread would
stop; no vaccine exists up to now, only medication after the
positive response to HIV- test. An information campaign could
induce people to have cautious behaviours and to periodically
test their negativeness to the HIV/AIDS. Moreover, medication
is included in the control actions since new drug therapies
help the patients in remaining in the HIV situations without
reaching the AIDS status. These three levels of intervention
are suggested by the World Health Organization (WHO).

Mathematical modelling of the HIV/AIDS diffusion has
been faced in [2]–[9], by considering, as in this paper, the
dynamics between subjects, thus introducing:
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- the class of susceptible subjects (S) that are the healthy
individuals that may contract the virus;

- the class of the infected individuals (I) not aware of their
condition;

- the class of the pre-AIDS patients (P);
- the class of the AIDS patients (A).

The importance of prevention has been stated in [5], [6],
where the attention is devoted to risky subjects, drug users and
sex workers, showing with simulation the effects of prevention.

Another approach, described in [10], focuses on the CD4
T-cells, the essential components of the immune system. An
HIV patient is classified as an AIDS one if he has less than 200
CD4 T-cells in mm3 of blood. In this case the analysis shows
the existence of two equilibrium points: the long term non-
proliferative (LTNP) condition and the AIDS one; therefore,
the medication strategy aims at driving the patient into the
LTNP region of attraction [2], [3].

The natural framework to study epidemic problems and, in
particular HIV/AIDS spread, is the optimal control, aiming at
determining the best control action with respect to conflicting
requirements, such as using as less resources as possible while
minimizing the number of infected patients, [8], [11]–[14].

In this paper, the approach considering the dynamics of
the interactions between subjects [1], [4], [5] is adopted.
The susceptible individuals S are divided into two categories,
considering people adopting wise behaviours and the ones that
do not consider adequately the dangerousness of this disease.
Therefore, five categories are present: two classes of healthy
subjects and three classes of subjects with HIV/AIDS. It is
worth to be noted that only the pre-AIDS subjects and the
AIDS patients are actually aware of their status. The external
actions introduced are an effective information campaign, a
test campaign and the virus therapy.

The control laws are computed to minimize a cost index to
reduce the number of infected subjects with positive diagnosis
of HIV/AIDS, using less resources as possible. The chosen
goal has consequences in all the control actions introduced
above, the increase of the information, the test campaign and
the medication. The minimum Pontryagin principle is applied
obtaining the optimal controls along with the corresponding
state evolutions.

The paper is organized as follows. In Section II the adopted
model is briefly recalled and the controls are introduced. In
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Section III, the optimal control is determined and in Section
IV, numerical results are presented and discussed. Conclusions
and future work are outlined in Section V.

II. THE HIV/AIDS MODEL

The model of the HIV/AIDS diffusion presented in [5], [6]
is here briefly recalled. This disease is particularly dangerous
since there is a period, also ten years long, in which its
symptoms are not evident and therefore a subject could,
unconsciously, infect other people. Nevertheless, it could be
transmitted only by specific risky contacts; despite the fact that
all the subjects could contract the virus, with wise behaviours
the infection could be stopped. These two characteristics have
been considered in the WHO suggestions of intervention and
have guided the choices of the proposed modelling.

In particular, the healthy subjects are divided into two
categories: the unwary subjects, denoted by S1 and the wise
ones that adopt safe behaviours, named S2. The infected
subjects may be distinguished into three kinds of patients: the
ones that still do not know to be infected, I , the subjects with
a positive HIV diagnosis, P , and the ones with AIDS, A. The
control actions introduced are the prevention with information
campaign inducing subjects to wise behaviours and to improve
a test campaign (primary and secondary preventions, respec-
tively); moreover, the medication is applied on the patients
with positive HIV/AIDS diagnosis (third action). The costs
of primary and secondary preventions represent an immediate
economic effort, whereas the effects could be noted only in
the future: a schedule of the control action is advisable.

Let
(
S1(t) S2(t) I(t) P (t) A(t)

)
denote the number

of individuals in each of the previous catecory. It is useful to
introduce also the quantity Nc(t) = S1(t) + S2(t) + I(t),
representing the part of the population for which no diagnosis
has been produced; it is the sum of the healthy people and the
unaware ones.

In Fig. 1, the block diagram representing the interactions
described above is depicted.

Fig. 1. Block diagram of the considered model.

The control actions introduced are: u1(t), corresponding to
the effort placed in the information campaign (for the S1(t)
reduction); u2(t), that is related to a test campaign to reduce

the unaware infected individuals and, consequently, to reduce
the interaction responsible of the epidemic spread; u3(t), the
therapy, which reduces the transition of the known infected
individuals P (t) to the more deadly group A(t).

Therefore, the final model is:

Ṡ1(t) = Z − dS1(t)− βS1(t)I(t)

Nc(t)
+ γS2(t)

−S1(t)u1(t) (1)
Ṡ2(t) = − (γ + d)S2(t) + S1(t)u1(t) (2)

İ(t) = β
S1(t)I(t)

Nc(t)
− (d+ δ) I(t)− ψ I(t)

Nc(t)
u2(t) (3)

Ṗ (t) = εδI(t)− (α+ d)P (t) + φψ
I(t)

Nc(t)
u2(t)

+P (t)u3(t) (4)
Ȧ(t) = (1− ε) δI(t) + αP (t)− (µ+ d)A(t)

− (1− φ)ψ
I(t)

Nc(t)
u2(t)− P (t)u3(t) (5)

where Z denotes the rate of increment of the population,
assumed as the newborn individuals and excluding infectious
transmission from mother to son.

All the parameters appearing in (1)–(5) represent the coef-
ficients which weight each contribution to the correspondent
rate of variables change. In particular

- β regulates the interaction responsible of the infectious
propagation;

- γ takes into account the fact that a wise individual in
S2(t) can, accidentally, assume a incautious behaviour
as the S1(t) persons;

- δ weights the natural rate of I(t) subjects becoming
aware of their status;

- α characterises the natural rate of transition from P (t)
to A(t) due to the evolution of the infectious disease;

- ψ determines the effect of the test campaign on the
unaware individuals I(t);

- φ is the fraction of individuals in I(t) which become,
after test, classified as P (t) (φ) or A(t) ((1-φ));

- ε is the fraction of individuals I(t) which discover to
be in the pre-AIDS condition or in the AIDS one;

- d is responsible of the natural death rate, assumed the
same for all the classes, while µ is the additional death
factor for the individuals A(t).

III. THE OPTIMAL CONTROL

In the model (1)–(5), the number of subjects P (t) with
positive diagnosis of HIV and the one A(t) with AIDS is an in-
formation that could be reasonably assumed known, resulting
after specific tests. A cost index aiming at the minimization of
the number of patients P (t) and A(t) is then introduced; this
should imply an indirect effect also on the unknown number
I(t) and on the number of S1(t) subjects, by introducing
effective control actions. Realistic considerations suggest the
introduction of a limitation on the resources needed. The final
time tf is assumed fixed, whereas the final state is free. The
following problem can be stated.
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Problem formulation: consider the dynamical system (1)–
(5) and assume that the initial and the final time instants, t0
and tf , are fixed; for sake of simplicity t0 = 0 is set. The
final state is left free, while the initial state is assumed fixed
and known

S1(0) = S10 S2(0) = S20 I(0) = I0

P (0) = P0 A(0) = A0 (6)

The control actions ui(t), i = 1, 2, 3, are continuous almost
everywhere and bounded by given upper limits

0 ≤ ui(t) ≤Mi, Mi ∈ R, i = 1, 2, 3 (7)

Assuming a1, a2 ≥ 0, ri ≥ 0 for i = 1, 2, 3, be

J (P,A, u1, u2, u3) =

1

2

∫ tf

0

(
a1P

2(t) + a2A
2(t) +

3∑
i=1

riu
2
i (t)

)
dt (8)

the cost index.
The goal is to determine the controls ui(t), i = 1, 2, 3

and the state evolution that minimize the cost index (8) and
satisfy the system (1)–(5) with the initial conditions (6) under
conditions (7). To solve the minimization problem, we first
introduce the Hamiltonian

H =
λ0
2

(
a1P

2(t) + a2A
2(t) +

3∑
i=1

riu
2
i (t)

)

+λ1(t)

(
Z − dS1(t)− βS1(t)I(t)

Nc(t)
+ γS2(t)

−S1(t)u1(t)

)
− λ2(t)

(
(γ + d)S2(t)− S1(t)u1(t)

)
+λ3(t)

(
β
S1(t)I(t)

Nc(t)
− (d+ δ) I(t)− ψ I(t)

Nc(t)
u2(t)

)
+λ4(t)

(
εδI(t)− (α+ d)P (t) + φψ

I(t)

Nc(t)
u2(t)

+P (t)u3(t)

)
+ λ5(t)

(
(1− ε) δI(t) + αP (t)

− (µ+ d)A(t)− (1− φ)ψ
I(t)

Nc(t)
u2(t)− P (t)u3(t)

)
(9)

where

λ(t) =
(
λ1(t) λ2(t) λ3(t) λ4(t) λ5(t)

)T ∈ R5 (10)

is the costate function and λ(0) ∈ R.
The necessary conditions of the control may be derived by

using the Pontryagin minimum principle [15]; more precisely,
the following result holds.

Theorem: the above optimal control problem admits the
normal solution:

u∗i (t) =

 0 Ωi ≤ 0
Ωi 0 ≤ Ωi ≤Mi

Mi Ωi ≥Mi

i = 1, 2, 3 (11)

with

Ω1(t) =
2 (λ∗1(t)− λ∗2(t))S∗

1 (t)

r1

Ω2(t) =
2ψ (λ∗3(t)− λ∗4(t)− (1− φ)) I∗(t)

r2N∗
c (t)

Ω3(t) =
2 (λ∗5(t)− λ∗4(t))P ∗(t)

r3

where λ∗i (t), i = 1. . . . , 5, are the adjoint variables satisfy-
ing

λ̇∗1(t) = − ∂H
∂S1

∣∣∣∣∗ = dλ∗1(t) + (λ∗1(t)− λ∗2(t))u∗1

(λ∗1(t)− λ∗3(t))
βI∗(t) (S∗

2 (t) + I∗(t))

N∗
c (t)

ψ
I∗(t)u∗2
N∗

c (t)
(λ∗3(t)− φλ∗4(t)− (1− φ)λ∗5(t))

(12)

λ̇∗2(t) = − ∂H
∂S2

∣∣∣∣∗ = γλ∗3(t) + γ (λ∗1(t)− λ∗2(t))

β (λ∗1(t)− λ∗3(t))
S∗
1 (t)I∗(t)

N∗2
c (t)

ψ
I∗(t)u∗2
N∗2

c

(λ∗3(t)− φλ∗4(t)− (1− φ)λ∗5(t))

(13)

λ̇∗3(t) = −∂H
∂I

∣∣∣∣∗ = (d+ δ)λ∗3(t)

β (λ∗1(t)− λ∗3(t))
S∗
1 (t) (S∗

1 (t) + S∗
2 (t))

N∗2
c (t)

ψ
(S∗

1 (t) + S∗
2 (t))u∗2

N∗2
c

(λ∗3(t)− φλ∗4(t)− (1− φ)λ∗5(t))

(14)

λ̇∗4(t) = −∂H
∂P

∣∣∣∣∗ = dλ∗4(t) + α (λ∗4(t)− λ∗5(t))

a1P
∗(t)− (λ∗4(t)− λ∗5(t))u∗3

(15)

λ̇∗5(t) = −∂H
∂A

∣∣∣∣∗ = (d+ µ)λ∗4(t)A∗(t)− a2A∗(t)

(16)

with final conditions

λ∗i (tf ) = 0, i = 1, . . . , 5 (17)

Proof: the solution comes directly from the applica-
tion of the minimum Pontryagin principle. Let Ξ∗ =(
S∗
1 (t) S∗

2 (t) I∗(t) P ∗(t) A∗(t)
)

satisfy the system
(1)–(5) and the initial state conditions (6). The necessary
conditions for Ξ∗ to be a minimum for the cost index (8)
are the following: defined H as in (9), there exists a constant
λ0 ≥ 0 and a function λ∗(t) ∈ R5, λ∗ ∈ C̄1 [ti, tf ] (first
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derivatives continuous almost everywhere) not simultaneously
null, such that

λ̇∗(t) = − ∂H

∂Ξ

∣∣∣∣∗T (18)

and

H (S∗
1 (t), S∗

2 (t), I∗(t), P ∗(t), A∗(t), u∗1(t), u∗2(t), u∗3(t)) ≤

H (S∗
1 (t), S∗

2 (t), I∗(t), P ∗(t), A∗(t), ω1(t), ω2(t), ω3(t))
(19)

for any admissible control functions ωi, i = 1, 2, 3.
From (19) the control law (11) is obtained; for its com-

putation the equations (12)–(16), coming from (18) must be
solved; being the final state not fixed, one has the boundary
condition λ∗(tf ) = 0. This condition also implies that λ0 > 0
and therefore the normality of the solution.

IV. NUMERICAL RESULTS AND DISCUSSION

As noted, in real situation the unique available data is the
one related with the number of subjects with positive HIV
diagnosis, P (t), and the number of subjects with an AIDS
diagnosis, A(t). This consideration determined the choice of
the cost index (8); aiming at reducing the number of P (t)
and A(t) subjects should involve all the control actions, but
in different ways. The first control (the information campaign)
should reduce the new infections, and therefore reduce the total
number of infected I(t)+P (t)+A(t). The second control (the
test campaign) should reduce the number of unaware infected
subjects I(t), thus increasing the number of aware infected
patients P (t) + A(t). Finally, the medication should aim at
reducing the number of subjects with an AIDS diagnosis, thus
avoiding, as much as possible, the transition of subjects from
the condition of pre-AIDS status to the AIDS one. As can
be noted, these actions appear to be in some way competitive
and in contradiction one to each other in the short period.
Therefore, the choice of the weights in the cost index could
enhance one strategy versus the others. As far as the model
parameters is concerned, the following values are assumed,
according to the literature, [1]:

d = 0.02; Z = 104; β = 1.5; γ = 0.2; ψ = 105;

δ = 0.4; φ = 0.95; ε = 0.6; α = 0.5; µ = 1.

The initial conditions

(S10, S20, I0, P0, A0) =
(
105, 104, 5 · 103, 0, 0

)
are assumed.

A first test is performed assuming in the cost index the
same weights a1 = a2 = 10−5 for both patients P (t) and
A(t), weighting more the first control action than the other
two: r1 = 1, r2 = r3 = 10−3. The final time tf = 50 is
chosen. The obtained optimal control functions significantly
influence the evolution of the state variables.

In Figs. 2–6 the controlled state variables are shown along
with the free evolutions for comparative purpose. It could be
appreciated that the number of susceptible subjects increases,
Figs. 2 and 3, thanks to the optimal combination of the control

Fig. 2. Test 1: time evolution of the S1(t) subjects with and without optimal
control actions .

Fig. 3. Test 1: time evolution of the S2(t) subjects with and without optimal
control actions

Fig. 4. Test 1: time evolution of the I(t) subjects with and without optimal
control actions

effort u1 and u2 that concur in avoiding incautious behaviours
of susceptible subjects and having a fast diagnosis, thus
again avoiding dangerous contacts. The control u2 concurs
in decreasing the number of infected subjects I(t), Fig. 4,
since it is devoted to help the subjects to discover, as soon as
possible, the illness and if they belong to the P (t) or A(t)
groups.
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Fig. 5. Test 1: time evolution of the P (t) subjects with and without optimal
control actions

Fig. 6. Test 1: time evolution of the A(t) subjects with and without optimal
control actions

Fig. 7. Test 1: time evolution of the optimal control actions

The number of subjects in the pre-AIDS condition P (t) at
the beginning increases (but less than in the case of absence
of control) and then it significantly decreases almost to zero,
Fig. 5. The same happens for A(t): while in the non-controlled
condition it goes to a value of about 10000 subjects, with a
controlled situation it definitely decreases to almost zero, Fig.
6. It is interesting to note that these results do not require the
third control action; it confirms the importance of the optimal

Fig. 8. Test 1: time evolution of the total number of infected, with and without
the control actions

Fig. 9. Test 2: time evolutions of the S1(t) and S2(t) subjects

Fig. 10. Test 2: time evolutions of the I(t), P (t) and A(t) subjects

combination of the prevention actions. In the case considered,
the medication seems not useful to the total reduction of both
P (t) and A(t). This is actually true for the cynical reason that
there is a higher mortality in A(t) than in P (t) and then any
action which keeps subjects in P (t) is in contrast with the
minimization requirements.

Then, in order to put in evidence the importance and the role
of each control action and to show how to get a more humane
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Fig. 11. Test 2: time evolutions of the optimal control actions

Fig. 12. Test 2: time evolution of the total population, with and without the
control actions

behavior, a second test is performed aiming at stressing the
conditions, which enhance the contribution of medication.
Clearly, the reduction of the number of patients with AIDS
should imply a rise in the number of patients in the pre-
AIDS status. So, in the cost function (8), only the state A(t)
is considered, along with the controls. A consequent choice
for the weights is a1 = 0, a2 = 10−2, r1 = 10, r2 = 10
and r3 = 0, with tf = 10 to stress the short term action.
In this case, in which the aim is to decrease the number of
AIDS patients, the combination of the controls enhances the
contribution of all the efforts, obtaining a significant decrease
of the number of AIDS patients, due also to the medication, a
decrease of the unaware infected and an increase in the number
of subjects in the pre-AIDS status, the LTNP patients. In Figs.
9 and 10 these behaviours of the state variables are shown,
whereas in Fig. 11 the three control actions are proposed.

The overall effectiveness of the optimal control action also
for this choice of cost function weights is well evidenced in
Fig. 12, where the time history of the total population under
the control action is compared with the same evolution without
control.

V. CONCLUSION

The paper investigates the possibility of controlling the
HIV/AIDS infection diffusion. The dynamical model adopted
includes three control actions corresponding to different strate-
gies of intervention. An optimal control problem formulation is
used for the reduction of the number of infected subjects under
an efficient resources allocation. Unfortunately, being known
only the number of the diagnosed individuals, they are the
only one considered in the definition of the cost function, but
it is shown through numerical simulations, that this limitation
does not affect the high effectiveness of the control action. The
result obtained shows how feasible controls for the prevention
of the HIV/AIDS infection effects can be obtained by means
of suitable optimal control problem formulations.
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